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Abstract 
The vertical gradient of normal gravity (VGNG) plays a significant role in several applications and is an 

interesting quantity from a pure theoretical point of view as well. In this work the VGNG will be studied from a 

theoretical point of view, therefore the expression of the VGNG at a point P on the Earth’s physical surface in 

geodetic coordinates is presented. Since the value VGNG also depends on the mean curvature of the normal 

equipotential surfaces, an effort has been made to express the fundamental quantities EU, FU, GU, LU, MU and 

NU at point P in a specific form. These quantities are expressed as combinations of the fundamental quantities of 

the ellipsoid of revolution, its mean curvature, Gauss curvature, and normal reduction. The fundamental 

quantities of the ellipsoid of revolution are determined at a point Q which is the projection of a point P, on the 

ellipsoid along the vertical line.  

The fundamental quantities of the ellipsoid, its mean curvature and Gauss curvature and the geometric height of 

the chosen point P represent the geometric part of the quantities EU, FU, GU, LU, MU and NU. The value of the 

normal reduction at point P represents the physical part of those quantities (i.e. EU, FU, GU, LU, MU and NU). 
The aforementioned fundamental quantities are very complicated functions expressed in geodetic coordinates. 

Thus we deduce that the significant complexity of the geometry of the normal equipotential surfaces results in 

an equivalent complexity of VGNG as a function of geodetic coordinates. Finally the effect of the geometry of 

the ellipsoid of revolution on the VGNG is examined.  
Keywords: Vertical gradient, normal gravity, ellipsoid, equipotential surfaces, mean curvature, Gauss 
curvature. 
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I. Introduction 
The vertical gradient of gravity (VGG) is a significant quantity in Geophysics and Geodesy. It shows 

that the variation of gravity at a chosen point P along the direction of the plumbline depends on physical 
quantities (Earth’s mean angular velocity, and gravity magnitude) and a geometric quantity. The geometric 

quantity is the mean curvature of the equipotential surface at point P. The expression of the vertical gradient of 

gravity shows an elegant relation between Geometry and Physics.  

The value of the VGG can be estimated practically (Vajda et al, 2015) by relative gravity meters 

observing on the ground and at a certain height above the benchmark. For example, it is necessary for the 

determination of the Deformation Induced Topographic Effect. The value of VGG (Zahorec et al, 2016) can be 

used to reduce gravity readings to the ground or to a common level in order to compare measurements from 

various types of gravity meters (relative and / or absolute ones). This procedure is necessary to avoid significant 

systematic errors. In the same paper, it discusses the significance of the VGG for volcano monitoring. Another 

example of high precision of VGG determination can be found in (Repanić et al, 2015).   

Interesting applications which make use of VGG (Pánisová and Pašteka, 2009) can be found in 

archaeology, such as the detection of subsurface cavities (for example air filled cavities, water filled cavities), 
crypts, cellars and tunnels in churches and castles.  

In Geodesy (Hackney and Featherstone, 2003) to compute gravity anomaly at the geoid requires the 

knowledge of the VGG. Gravity anomaly is necessary for the determination of geoid undulation using Stokes’ 

formula.  

The vertical gradient of normal gravity (VGNG) - or “free – air” correction - is used to partly 

downward or upward continue observed gravity to the geoid. As a linear approximation the value of 0, 3086 

mgal/m (at geodetic latitude φ = 45
0
 on the surface of the ellipsoid of revolution) is used. A second order 

approximation takes into account the oblate elliptical shape of the Earth. In this work the expression of the 

VGNG in geodetic coordinates at a point P on the Earth’s physical surface will be presented. This effort will 

shed some light to the problem of finding a general expression for VGNG in geodetic coordinates. The variation 

of VGNG along the vertical line to the ellipsoid passing through point P depends also on the variation of the 
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mean curvature of the normal equipotential surfaces. For this reason an effort has been made in order to express 

the fundamental quantities EU, FU, GU, LU, MU and NU of the normal equipotential surfaces as combinations of 

the fundamental quantities of the ellipsoid of revolution (in the sequel it will be referred as “ellipsoid”) .  
In section 2 the quantities of the first fundamental form of a normal equipotential surface U = UP will 

be determined (at point P), and in section 3 the quantities of the second fundamental form will be determined. 

Finally, in section 4 the results will be tabulated and some conclusions will be discussed in section 5.   

 

II. Methodology, quantities of the first fundamental form 
Let a point P on the Earth’s physical surface with geodetic coordinates (φP, λP, hP). In addition let 
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where  
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be a parametric representation of a part of an ellipsoid of revolution. The geometry of the ellipsoid of revolution 

is studied in detail in (Deakin and Hunter, 2003), therefore the quantities which will be needed in the sequel are 
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The unit normal vector and its derivatives are 

 

)sin,sincos,coscos(),(  
ee

NN                                                                            (2.5) 

 

)cos,sinsin,cos(sin),( 



ee

NN                                                                                   (2.6) 

 

)0,coscos,sin(cos),( 



ee

NN                                                                                         (2.7) 

 
eee

NNN  )sin,sincos,cos(cos),( 


                                                                     (2.8) 

 




tan)0,cossin,sinsin(),(
eee

NNN                                                                (2.9) 

 

)0,sincos,cos(cos),( 



ee

NN                                                                                       (2.10) 

 

The fundamental quantities of the ellipsoid are 
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From Weingarten equations (Weatherburn, 1995) we have that 
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Known relations hold for the mean and Gauss curvature of the ellipsoid 
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Now let Sp be a parallel surface of the ellipsoid such that  
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It holds that  
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The unit normal vector of the parallel surface passing through point P is 
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The fundamental quantities of the parallel surface are (Kiziltuǧ and Tarakci, 2013) 
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The differences in certain signs are due to the fact that the unit normal vector of the ellipsoid points inwards. 

Therefore the vector equation of the parallel surface is written with a minus sign instead of a plus sign.    

Now let SU be the normal equipotential surface passing through point P. The value of the normal potential on 
this surface is UP. Let a parameterization of a part of the equipotential surface be  
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where 
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It holds that 
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The quantities of the first fundamental form are 
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Eventually  
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Since normal equipotential surfaces are surfaces of revolution then  
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Eventually  
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A simple expression for the unit normal vector of the normal equipotential surface is 
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The angle ε (Moritz, 1967) – or normal reduction - can be determined from the following relation 
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The symbols γα and γb stand for the value of normal gravity at the equator and poles respectively. The minus 

sign is conventional and it is adopted in eq. (2.43). One issue in eq. (2.39) is that the function δhφ is unknown, 

therefore it must be determined. It holds that 
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Hence relation (2.45) becomes 
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Rearranging terms, the components of the above vector are equal to  
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Therefore (see eq. (2.13) and (2.16)) 
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Thus 
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At point P a simpler formula holds since δh(φP) = 0 hence 
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In eq. (2.55) and (2.56) the minus sign to the angle ε (see eq. (2.44)) is adopted. 

 

III. Methodology, quantities of the second fundamental form 
For the quantities LU, MU and NU the following second order partial derivatives are needed (see eq. (2.8),(2.9), 

(2.36), and (2.37)) 
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The first inner product is equal to 
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The function δhφφ can be found from the derivation of eq. (2.55). The following two derivatives are needed 
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The derivative of eq. (2.55) is 
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At point P δh = 0 hence 
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Therefore at point P (setting δh = 0 to eq. (3.6)) 
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From the above relation and eq. (2.15) we have that  
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In addition 
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From eq. (3.16), (3.17), (3.18), (3.19), (3.20) and (3.21) we have eventually that 
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After some manipulations, at point P the following relation holds   
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IV. Results, normal vertical gradient at point P 
The following two tables contain all the necessary geometrical quantities for the ellipsoid and the normal 

equipotential surface U = UP. The quantities which are related to the results of the paper are in Table No 2. 
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Table No 1: Fundamental quantities of the ellipsoid and their first derivatives 
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The quantities in Table No 1 are necessary for the expression of the quantities in Table No 2. 
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Table No 2: Fundamental quantities of the normal equipotential surface U = UP at point P. 

 

The fundamental quantities of the normal equipotential surface U = UP at point P contain the 

fundamental quantities of the ellipsoid. Let Q be the projection poin of point P along the vertical line to the 

ellipsoid. From the form of the relations in Table No 2 it is evident that as the geometric height tends to zero the 

fundamental quantities of the aforementioned surface at point P tend to be equal to the fundamental quantities of 

the ellipsoid at point Q. The most complicated fundamental quantity is L
U
 since it contains the quantity δhφφ. 

For small elevation hP up above the ellipsoid the following formula is adopted (Moritz, 1967) 
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where Gc is the gravitational constant, ME is the Earth’s mass, f is the flattening of the ellipsoid, m is given by  
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where ω is the Earth’s mean angular velocity and 
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The normal vertical gradient of gravity at point P is equal to  
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where JU is the mean curvature of the normal equipotential surface U = UP at point P. The above relation as a 

function of geodetic coordinates is very complicated. Relation (4.3) can be written as 
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If the axis “a” is increasing and “b” is constant (see Table No 1 and Table No 2) then the effect of the geometry 

of the ellipsoid on VGNG becomes more pronounced since the denominator in the expression of the mean 

curvature (eq. (4.4)) depends strongly on the geometry of the ellipsoid (see Table No 1 and Table 2). 

 

V. Conclusions 
The VGNG is an interesting quantity both from a practical and a theoretical point of view. In this 

theoretical study of VGNG the geometry of the normal equipotential surfaces was investigated. This geometry 

was split into two parts: The first part was the purely geometric part and was represented by the surface 

geometry of the ellipsoid i.e. its fundamental quantities, its mean and Gauss curvature. The second part was the 
physical part which was represented by the normal reduction (angle ε) which is the angle between the gravity 

vector at a point P (located on the Earth’s physical surface) and the vertical line to the ellipsoid passing through 

the same point.  

This investigation has shown that the fundamental quantities, the mean and Gauss curvature of the normal 

equipotential surfaces are very complicated functions of geodetic coordinates. This results into an equivalent 

complexity of the VGNG as a function of geodetic coordinates. This is a kind of unfortunate event since this 

kind of formula is not suitable for calculations.  

Finally it was found that the VGNG can be strongly affected by the geometry of the ellipsoid if the 

axles of the ellipsoid are significantly different in magnitude, i.e. axis “a” is much greater that axis “b”.   
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